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NON-VIRAL DNA DELIVERY COUPLED TO TALEN GENE EDITING EFFICIENTLY CORRECT THE SICKLE CELL
MUTATION IN LONG-TERM HSCS
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Background
Sickle Cell Disease (SCD)

* SCDis an inherited blood disorder that stems from a single point mutation (A>T) in exon 1 of the HBB gene. HBB encodes the hemoglobin beta subunit (Hb)
that associates with hemoglobin alpha subunit to generate the tetrameric protein complex called adult hemoglobin (HbA).1

* Mutated HbA polymerization results in sickle shaped red blood cells (RBCs) that cause reduced oxygen transfer to tissues throughout the body and alter
normal blood flow.1?

Normal HBB (B) HbA
— GAG — Glutamate \
(HbA) ]
Sickle HBB ([3°)
_ GTG Valine X
(HbS)

* People with SCD often suffer from anemia, painful vaso-occlusive crises, frequent infections, stroke and many other symptoms that can, ultimately, reduce
quality of life and expected lifespan?.

* SCD can be cured with hematopoietic stem cell transplant. However, this procedure is only available to patients with severe disease, it requires an HLA-
matched donor and is associated to a substantial rate of morbidity and mortality?. Thus, alternative treatments are highly regarded

* This work proposes an autologous gene therapy approach based on ex vivo HBB gene correction in HSPCs to treat SCD.

References: 1. Renaudier P, Transfus Clin Biol. 2014; 2. Piel FB et al, Lancet 2013;Eapen et al. Lancet Hematol. 2019

TALEN®-mediated HBB gene correction strategy
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. We developed an autologous gene therapy strategy to treat SCD with a TALEN® targeting the mutated HBB gene followed by the delivery of a DNA template
to repair the HBB mutation via homologous directed repair (HDR).

. Here, we report that our protocol 1), efficiently corrects HBB in long-term repopulating hematopoietic stem cells (LT-HSCs) and repairs the sickle cell
phenotype in differentiated RBCs 2), provides a direct comparison of viral and non-viral strategies for DNA delivery and 3), mitigates collateral effect derived
from bi-allelic inactivation of HBB.

Non-viral gene editing mitigates p53 response activation, maintains LT-HSC
pool and fithess and enables high level gene correction in vivo
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* To assess the ability of TALEN® editing to achieve high HDR efficiencies in LT-HSCs, edited plerixafor-mobilised HSPCs from three healthy donors were
injected in immunodeficient mice and analyzed 16 weeks post-engraftment to assess bone marrow (BM) human chimerism, multilineage engraftment and
editing efficiencies (A).

* Non-viral DNA delivery performed better than viral-mediated editing in vivo, reaching high level BM engraftment, comparable to non-edited HSPCs (B),
multilineage reconstitution (C) and long-term maintenance of HDR in engrafted LT-HSCs at levels comparable to the input (average 30% HDR at 16 weeks in
BM) (D).
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* A higher proportion of primitive HSC-enriched cells was found in ssODN- vs AAV6-edited sample (E-F) correlating with engraftment data (G). By looking at

transcription profile of HSC-enriched cells, we observed that edited HSCs upregulated several pathways including interferon, inflammation and p53
signaling, compared to untreated sample (H-1). Interestingly, a mitigated p53 signaling activation was observed in ssODN edited samples suggesting that
non-viral gene editing better preserves HSC fitness than viral gene editing (I).

TALEN®-HBB displays editing activity at HBB locus and high specificity with
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Highly efficient TALEN® based gene editing at HBB locus in mobilized HSPCs

from healthy donors
Editing efficiency by ddPCR
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* Mobilized HSPCs from healthy donors were expanded, edited with TALEN® coupled to either AAV6 or ssODN delivering the correct HBB sequence. Edited cells
were analyzed 48h after editing to assess editing efficiency, viability, purity and clonogenic potential by CFU-assay (A).
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* Our process led to high HDR frequencies (>50%), while maintaining low levels of indels (<20%) either using AAV6 or ssODN (B). It was reproducible in six
different donors and did not affect HSPCs viability (>95% mean viable cells), or purity (> 95% mean CD34+ cells assessed by FACS) (C). We observed a
decreased HSPCs clonogenic potential after editing which was further impacted by AAV transduction (D), without lineage skewing between edited and
untreated HSPCs (E).

* scRNaseq analysis enabling to simultaneously characterize

TALEN®-mediated gene editing reaches high level of gene correction in SCD
patient’s derived HSPCs with minimal collateral effect
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corrected collateral effect
. To assess whether our gene editing protocol would efficiently correct sickle-cell HSPCs, we purified HSPCs from multiple non-mobilized homozygous

sickle patients (hnmHbSS) and assessed gene editing efficiencies in CD34+ bulk and BFU-E single clones and clonogenic potential. We also differentiated
edited HSPCs into fully mature red blood cells (RBCs) to evaluated hemoglobin expression, sickling properties and the potential beta-thalassemic
phenotype through scRNAseq (A)

. Our editing strategy achieved high gene correction frequencies (>50%), while maintaining low levels indels (<20%)(B). It was reproducible in multiple

different donors and did not impact HSPCs clonogenic potential (C). Notably we reached an average of 68% and 79% of corrected BFU-E clones while
generating less than 10% bi-allelic indels clones.
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-TALEN®-mediated engineering efficiently corrects the mutated HBB gene in clinically relevant HSPCs

fully mature RBCs

and this translates into phenotype correction in

-Our optimized TALEN® gene editing process mitigates potential safety challenges by reducing the frequency of HBB gene inactivation

-Non-viral DNA template mediated repair mitigates p53 DNA damage response activation and preserve LT-HSCs fitness

-Non-viral DNA delivery template coupled to TALEN® editing enables higher engraftment and maintenance of gene correction in LT-HSCs

This communication expressly or implicitly contains certain forward-looking statements concerning Cellectis and its business. Cellectis is providing this communication as of this date and does not undertake to update any forward-looking
statements contained herein as a result of new information, future events or otherwise. This communication contains Cellectis’ proprietary information. TALEN® and Cellectis® are trademarks owned by the Cellectis Group.
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