
Non-viral gene editing mitigates p53 response activation, maintains LT-HSC 
pool and fitness and enables high level gene correction in vivo

TALEN®-mediated gene editing reaches high level of gene correction in SCD 
patient’s derived HSPCs with minimal collateral effect

TALEN®-mediated HBB gene correction strategy

• We developed an autologous gene therapy strategy to treat SCD with a TALEN® targeting the mutated HBB gene followed by the delivery of a DNA template 
to repair the HBB mutation via homologous directed repair (HDR). 

• Here, we report that our protocol 1), efficiently corrects HBB in long-term repopulating hematopoietic stem cells (LT-HSCs) and repairs the sickle cell 
phenotype in differentiated RBCs 2), provides a direct comparison of viral and non-viral strategies for DNA delivery and 3), mitigates collateral effect derived 
from bi-allelic inactivation of HBB.

Highly efficient TALEN® based gene editing at HBB locus in mobilized HSPCs 
from healthy donors

TALEN®-HBB displays editing activity at HBB locus and high specificity with 
only one off-target site detected

Background

Sickle Cell Disease (SCD) 

• SCD is an inherited blood disorder that stems from a single point mutation (A>T) in exon 1 of the HBB gene. HBB encodes the hemoglobin beta subunit (Hb) 
that associates with hemoglobin alpha subunit to generate the tetrameric protein complex called adult hemoglobin (HbA).1

• Mutated HbA polymerization results in sickle shaped red blood cells (RBCs) that cause reduced oxygen transfer to tissues throughout the body and alter 
normal blood flow.1,2

• People with SCD often suffer from anemia, painful vaso-occlusive crises, frequent infections, stroke and many other symptoms that can, ultimately, reduce 
quality of life and expected lifespan2. 

• SCD can be cured with hematopoietic stem cell transplant. However, this procedure is only available to patients with severe disease, it requires an HLA-
matched donor and is associated to a substantial rate of morbidity and mortality2. Thus, alternative treatments are highly regarded

• This work proposes an autologous gene therapy approach based on ex vivo HBB gene correction in HSPCs to treat SCD. 
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NON-VIRAL DNA DELIVERY COUPLED TO TALEN GENE EDITING EFFICIENTLY CORRECT THE SICKLE CELL 
MUTATION IN LONG-TERM HSCS

Conclusions

-TALEN®-mediated engineering efficiently corrects the mutated HBB gene in clinically relevant HSPCs (68-79% corrected progenitors) and this translates into phenotype correction in 
fully mature RBCs (Up to 50% HbA expression)

-Our optimized TALEN® gene editing process mitigates potential safety challenges by reducing the frequency of HBB gene inactivation (<10% β-thal cells)

-Non-viral DNA template mediated repair mitigates p53 DNA damage response activation and preserve LT-HSCs fitness 

-Non-viral DNA delivery template coupled to TALEN® editing enables higher engraftment and maintenance of gene correction in LT-HSCs (Up to 40% corrected LT-HSCs)
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• High activity of TALEN®-HBB detected at HBB onsite in 
HBB βs HSPCs

• High specificity of TALEN®-HBB assessed by unbiased 
Oligo Capture Assay and locus specific deep sequencing. 
Only one off-site was confirmed at the HBD gene. 
TALEN® cleavage off-site activity was found to be very 
low compared to the on-site cleavage activity (1.2% +/- 
0.4 at the off-site versus 50.7% Indels +/-  3.9 at the on-
site).
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• Mobilized HSPCs from healthy donors were expanded, edited with TALEN® coupled to either AAV6 or ssODN delivering the correct HBB sequence. Edited cells 
were analyzed 48h after editing to assess editing efficiency, viability, purity and clonogenic potential by CFU-assay (A).

• Our process led to high HDR frequencies (>50%), while maintaining low levels of indels (<20%) either using AAV6 or ssODN (B). It was reproducible in six 
different donors and did not affect HSPCs viability (>95% mean viable cells), or purity (> 95% mean CD34+ cells assessed by FACS) (C). We observed a 
decreased HSPCs clonogenic potential after editing which was further impacted by AAV transduction (D), without lineage skewing between edited and 
untreated HSPCs (E).

CFU plating efficiency
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Single-cell RNAseq
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• To assess the ability of TALEN® editing to achieve high HDR efficiencies in LT-HSCs, edited plerixafor-mobilised HSPCs from three healthy donors were 
injected in immunodeficient mice and analyzed 16 weeks post-engraftment to assess bone marrow (BM) human chimerism, multilineage engraftment and 
editing efficiencies (A).

• Non-viral DNA delivery performed better than viral-mediated editing in vivo, reaching high level BM engraftment, comparable to non-edited HSPCs (B), 
multilineage reconstitution (C) and long-term maintenance of HDR in engrafted LT-HSCs at levels comparable to the input (average 30% HDR at 16 weeks in 
BM) (D).

• A higher proportion of primitive HSC-enriched cells was found in ssODN- vs AAV6-edited sample (E-F) correlating with engraftment data (G). By looking at 
transcription profile of HSC-enriched cells, we observed that edited HSCs upregulated several pathways including interferon, inflammation and p53 
signaling, compared to untreated sample (H-I). Interestingly, a mitigated p53 signaling activation was observed in ssODN edited samples suggesting that 
non-viral gene editing better preserves HSC fitness than viral gene editing (I). 
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Transcriptomic profile and Differential expression analysis of HSC-enriched cells

• To assess whether our gene editing protocol would efficiently correct sickle-cell HSPCs, we purified HSPCs from multiple non-mobilized homozygous 
sickle patients (nmHbSS) and assessed gene editing efficiencies in CD34+ bulk and BFU-E single clones and clonogenic potential. We also differentiated 
edited HSPCs into fully mature red blood cells (RBCs) to evaluated hemoglobin expression, sickling properties and the potential beta-thalassemic 
phenotype through scRNAseq (A)

• Our editing strategy achieved high gene correction frequencies (>50%), while maintaining low levels indels (<20%)(B). It was reproducible in multiple 
different donors and did not impact HSPCs clonogenic potential (C). Notably we reached an average of 68% and 79% of corrected BFU-E clones while 
generating less than 10% bi-allelic indels clones.

HBB βs HSPCs
(Sickle)

• Our protocol allowed high expression of adult hemoglobin (HbA) 
(>50%), while maintaining a correct level of total hemoglobin as 
assessed by alpha to non-alpha globin ratio (alpha globin level set to 1) 
(E). Moreover, it mitigated collateral effect derived from HBB 
inactivation observed in the β-thalassemic-like control (β-Thal). Finally, 
TALEN® gene editing enables rescuing the sickling phenotype (up to 
70% of normal cells obtained) in hypoxic conditions (F).

• scRNaseq analysis enabling to simultaneously characterize
the genotype and transcription profiles of edited RBCs,
highlighted a cell cluster in the β-thal control, which was
absent in the mock (G). Interestingly, this cluster was
mainly composed of RBCs harboring bi-allelic indels and
was reduced in the edited samples (<10% cells)(G-H).

• A β-thalassemic signature characterized by upregulation of
heat shock protein genes (HSP), ribosomal proteins genes
and genes encoding for fetal Hb was observed in the β-thal
control, while edited RBCs had a transcription profile
similar to the mock control(I). These data confirm the
reduced risk of TALEN®-gene correction to generate β-thal
phenotype which is restricted only to the cluster of cells 
harboring bi-allelic indels as shown by HSPA1A
expression(G).

Differential expressed genesSingle-cell genotypeSingle-cell RNAseq RBCs

• Single-cell RNAseq (scRNAseq) was 
performed in HSPCs before in vivo injection 
to better characterize the discrepancies 
observed between viral and non-viral 
editing of LT-HSCs (A). 
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