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TALE base editors (TALEB) are fusions of a transcription activator-like effector domain (TALE), split-DddA deaminase halves, and a uracil glycosylase inhibitor (UGI). The C-to-T class of TALEB edits double strand DNA by converting a cytosine (C) to a thymine (T) via the TALEB dO nOt generate DS
formation of a uracil intermediate. We recently developed and applied a strategy that allowed the comprehensive characterization of C-to-T conversion efficiencies within the target editing window. This method alo takes advantage of a highly precise and efficient

TALEN®-mediated knock-in of ssODN in primary T cells to assess how the composition and spacer variations of target sequences affect TALEB activity/efficiency. Additionally, we highlighted that the composition of bases surrounding the target bases (TC) may strongly
influence the editing efficiencies. We also demonstrated that different TALEB scaffolds could be used to relax target sequence limitations (to increase the targetable sequence) or be used to decrease or eliminate bystander editing within the editing window (to increase

specificity). Overall, these findings allow for the fine-tuning of TALEB for a desired gene editing outcome. We then applied a range of different techniques to assess characteristics of nuclear genome editing. First, we focused on on-target editing and then explored the No translocations were 4 | TRAC TALEN® ‘ TRAC TALEN® ‘ ‘ No TALEN®/
possibility and risk associated with genome-wide TALE-dependent/independent binding and editing. By using an experimental model relevant for therapeutic application with TALEB mRNA vectorization in primary cells (e.g. PBMCs and HSCs), we demonstrated that detected between a bait 8 | CD52 TALEN® CD52 TALEB | [ TALEB
targeted binding of a single TALEB arm does not lead to detectable editing (detection limit: 0.1-0.2%). Finally, we further applied hybrid capture assays to test for off-target editing, in particular, within regions of the genome that were previously highlighted in cell lines. DSB (nuclease) and a TALEB A _ _— ——
We demonstrated, in our relevant experimental setup with primary T cells, that editing at these sites was not detectable (detection limit: 0.2%). Altogether, the results of this study have enhanced our control and use of TALEB and allow for the design of extremely editing site. Translocations
efficient (high editing frequencies and edit purity) and specific (absence of TALE-independent off sites and very limited, if not absent, DSB generation) TALEB, compatible with the development of future therapeutic applications. between the two targeted -Q1
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XXXTTXXX C-to-T conversion (%) of the pos1 C was measured in a 13 bp spacer In the 15 bp spacer context, editing results showed a clear difference in mutation rates on the « In orimary T-cells. when vectorized as mRNA
context. Both the C11 and C40 architecture showed a permissive pos1C, with the C40 architecture showing more permissive activity overall, with less P v ! !
BDNA extraction profile with high rates of editing (C11: 70.96 +/- 14.53, C40: 60.78 dependence on context requirements than the C11 scaffold. The 15bp spacer in both
+/- 13.74; median +/- stddev). Comparison of the editing results architectures showed more restrictive editing (C11: 1.09 +/- 2.68, C40: 17.21 +/- 15.41, median * TALEB do not show generation of DSBs
showed small differences in mutation rates on the pos1 C, almost +/- stddev).The use of the C11 architecture with the 15 bp spacer nearly abolished editing in * TALEB do not show editing at previously reported off-sites
NGS analysis independent of context requirements. most contexts, revealing the possibility to prevent edits on stretches of multiple cytosines.
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