

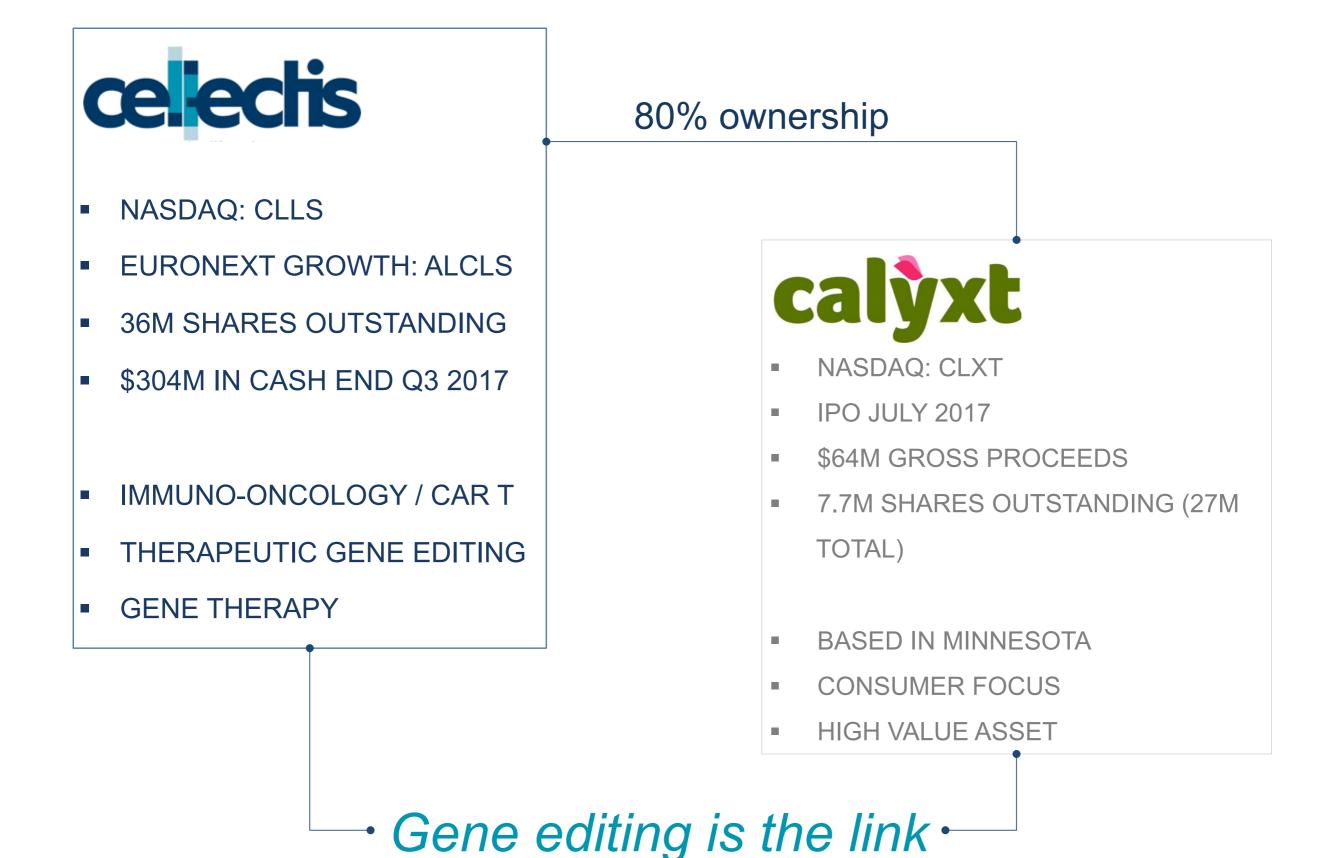
GENE EDITED CAR-T THERAPIES THE PARADIGM IN ONCOLOGY

Cellectis, January 2018

FORWARD-LOOKING STATEMENTS

THIS PRESENTATION CONTAINS "FORWARD-LOOKING" STATEMENTS THAT ARE BASED ON OUR MANAGEMENT'S CURRENT EXPECTATIONS AND ASSUMPTIONS AND ON INFORMATION CURRENTLY AVAILABLE TO MANAGEMENT.

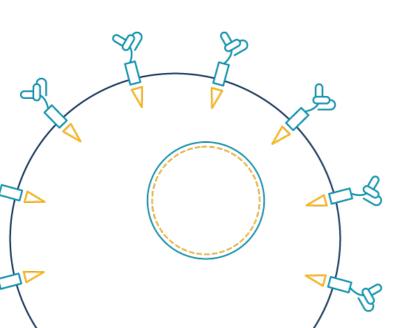
FORWARD-LOOKING STATEMENTS INVOLVE KNOWN AND UNKNOWN RISKS, UNCERTAINTIES AND OTHER FACTORS THAT MAY CAUSE OUR ACTUAL RESULTS, PERFORMANCE OR ACHIEVEMENTS TO BE MATERIALLY DIFFERENT FROM ANY FUTURE RESULTS, PERFORMANCE OR ACHIEVEMENTS EXPRESSED OR IMPLIED BY THE FORWARD-LOOKING STATEMENTS.

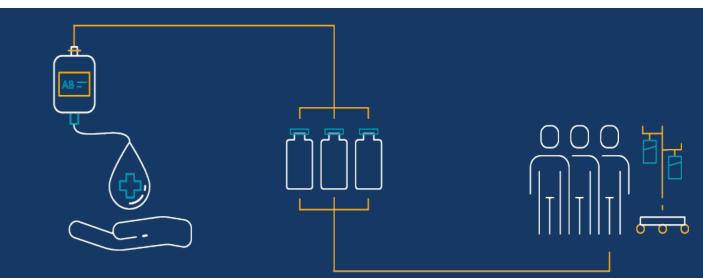

THE RISKS AND UNCERTAINTIES INCLUDE, BUT ARE NOT LIMITED TO THE RISK THAT THE PRELIMINARY RESULTS FROM OUR PRODUCT CANDIDATES WILL NOT CONTINUE OR BE REPEATED, THE RISK OF NOT OBTAINING REGULATORY APPROVAL TO COMMENCE CLINICAL TRIALS ON THE UCART PRODUCT CANDIDATES, THE RISK THAT ANY ONE OR MORE OF OUR PRODUCT CANDIDATES WILL NOT BE SUCCESSFULLY DEVELOPED AND COMMERCIALIZED. FURTHER INFORMATION ON THE RISK FACTORS THAT MAY AFFECT COMPANY BUSINESS AND FINANCIAL PERFORMANCE, IS INCLUDED IN FILINGS CELLECTIS MAKES WITH THE SECURITY EXCHANGE COMMISSION FROM TIME TO TIME AND ITS FINANCIAL REPORTS.

EXCEPT AS REQUIRED BY LAW, WE ASSUME NO OBLIGATION TO UPDATE THESE FORWARD-LOOKING STATEMENTS PUBLICLY, OR TO UPDATE THE REASONS ACTUAL RESULTS COULD DIFFER MATERIALLY FROM THOSE ANTICIPATED IN THE FORWARD-LOOKING STATEMENTS, EVEN IF NEW INFORMATION BECOMES AVAILABLE IN THE FUTURE.

CELLECTIS PROPRIETARY INFORMATION. NOT TO BE COPIED, DISTRIBUTED OR USED WITHOUT CELLECTIS' PRIOR WRITTEN CONSENT.

The Cellectis Group




Leader in Allogeneic CAR-T

2017 market: CAR-T in the spotlight

- CAR-Ts are here to stay
- First FDA approved autologous CAR-Ts on the market
- Allogeneic CAR-T concept validated
- First market challenges for autologous CAR-Ts

- Allogeneic CAR-Ts: major uncertainties relativized
 - ✓ Industrialized manufacturing process
 - High-precision TALEN[®] gene editing used in clinical trial in US and EU
 - No significant GvHD
 - Allogeneic CAR-T engraft and expand
 - **Efficacy** on par with autologous CAR-T

Rich Allogeneic CAR T Pipeline

Addressing unmet medical need with proven targets

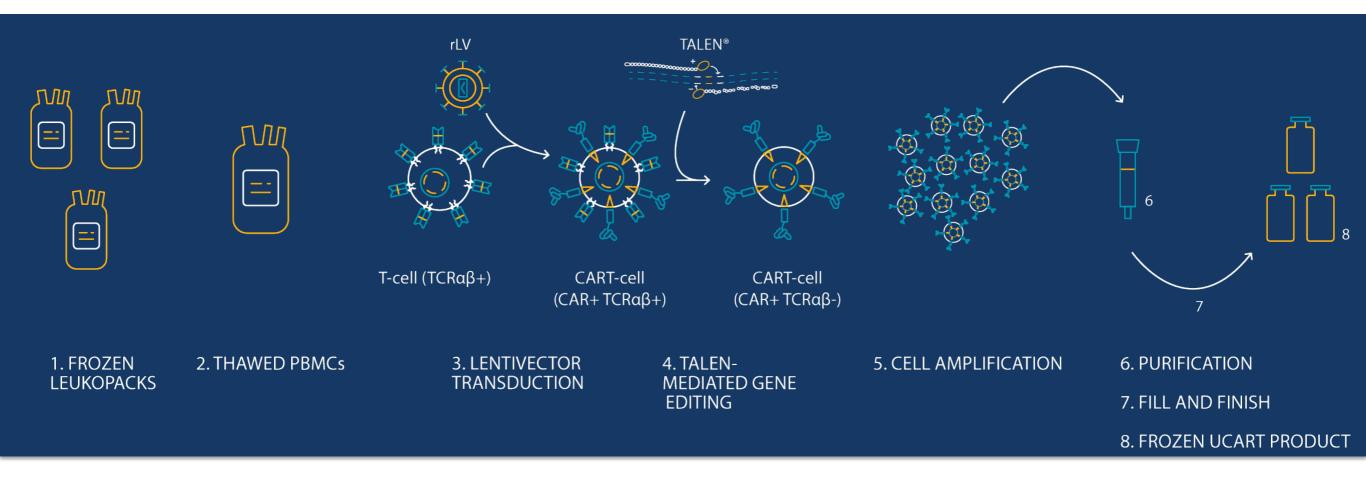
Program	Indication	Product development	Preclinical	Manufactu- ring	IND Filing*	Phase I	Ph II	Ph III
UCART19**	ALL (PALL)							
	ALL (CALM) AML							
UCART123	BPDCN							
UCART22	B-ALL B-NHL							
UCARTCS1	MULTIPLE MYELOMA							

- **2 UCART in clinic: UCART19 & UCART123**
- Rich pipeline, with proven targets
- Potential quick wins in next 3 years with several IND filings

* or European equivalent ** UCART19 is exclusively licensed to Servier and under a joint clinical development program between Servier and Pfizer Severe diseases with unmet needs

Allowing for potential fast track development plans

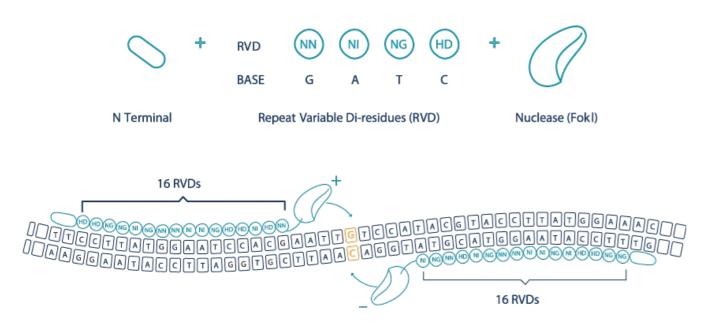
US Estimate	Estimated New Cases in 2017	Estimated Deaths in 2017	5 Year Survival (2007-2013)
AML*	21,000	10,000	26,9%
BPDCN	Estimated < 1% of all hema	atologic malignancies**	38%***
ALL*	6,000	1,500	68,2%
CLL*	20,000	4,500	83,2%
MYELOMA*	30,000	13,000	49,6%
NON HODGKIN LYMPHOMA*	72,000	20,000	71%


* National Cancer Institute (NCI), https://seer.cancer.gov

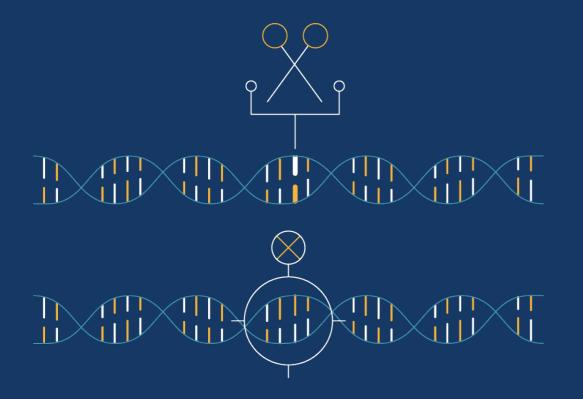
** Riaz et al, 2014

*** Alsidawi et al, 2016

Allogeneic CAR T – GMP Manufacturing

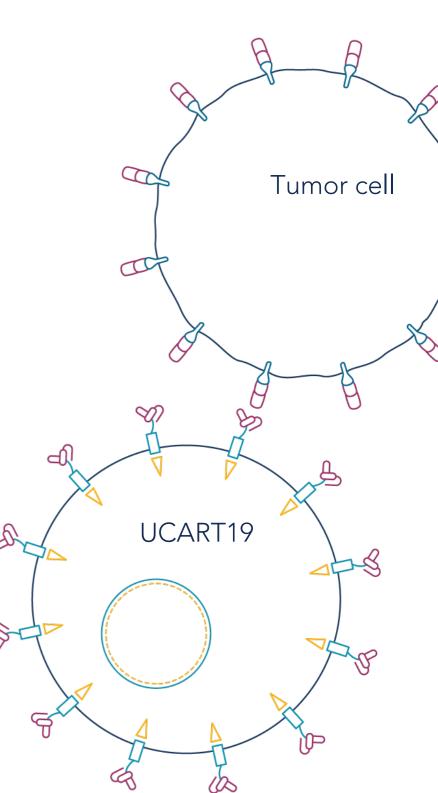


GMP manufacturing in place for UCART19, UCART123, UCART22


Full QC system, cleared for clinical trials

A cornerstone: TALEN® gene editing Highest yield and precision

- ≥80% knockout efficiency
- Precision targeting to 6 base pairs
- Low off-target cleavage
- 18 years of experience in gene editing
- Strong intellectual property



A powerful gene editing technology

In clinic since 2015 in US and EU

UCART19* Initial Proof Of Concept in ALL

- 1st patient dosed in June 2015 (compassionate)
- Phase I trials (US/EU) started in June 2016
- 4 recruiting centers (EU and US)
- 14 patients treated disclosed (7 adults and 7 pediatric)**
- Results in line with early autologous CAR-T Phase I results published in past years
- Patients failed >5 lines of treatment, including autologous CAR-T
- Ph1b expansion at U Penn and MD Anderson

^{*} UCART19 is exclusively licensed to Servier and under a joint clinical development program between Servier and Pfizer **Including compassionate

Early Clinical Data UCART19* in Pediatric ALL patients (ASH 2017)

	Lymphodepletion & patient age	Disease status before treatment	Dose level (CAR-T Cells/kg)	MRD- CR/CRi	Adverse event > Grade 3	Relapse follow up
SERVIER & KCL (PALL) ASH 2017	CFA 6 m to 17 y	All patients were ineligible for or had failed autologous CAR T treatment	1.1 to 2.3x10 ⁶	100% (7/7)* CR or CRi	CRS 14% (1/7) NT 0% (0/7)	29% (2/7) - 6 m 1 CD19- and 1 CD19+
KITE & NCI ASCO 2013	CF 1 to 30 y	Relapse or refractory	1x10 ⁶	100% (2/2) CR	CRS 50% (1/2)	
JUNO & SCH (PLAT-02) ASH 2014	C or CF 4 m to 3 y	4 pts MRD+, 2 pts MRD Relapse after allo-SCT	5x10⁵	83% (5/6) CR	CRS 33% (2/6) NT 50% (3/6)	
JUNO & FHCRC AACR 2015	C or CF or CE 18 to 60y	Relapse or refractory	1x10 ⁶	91% (20/22) CR	CRS 36% (8/22)	$\frac{18\%(4/22)}{3\ CD19_{-}\ and\ 1}{CD19_{+}}$
NOVARTIS (ELIANA) ASH 2016	CF or other 3 to 21 y	All patients with morphologic disease: primary refractory, chemorefractory after first relapse, relapsed after second line therapy or ineligible for allo- SCT	0.2 to 4x10 ⁶	83% (24/29) CR or CRi	CRS 52% (15/29) NT 21% (6/29)	
NOVARTIS & UPENN (PEDI CART19) N Engl J Med 2013	+/_CE 7 & 10 y	All 2 pts MRD+ Chemorefractory after second relapse or second relapse after allo-SCT	1.4×10 ⁶ or 1.2×10 ⁷	100% (2/2) CR	CRS 50% (1/2) NT 0% (0/2)	50% (1/2) - 2 m
MSKCC & DFCI ASH 2014	- 13 to 22 y	3/4 pts with morphologic disease Relapse	0.3 to 1x10 ⁶	50% (2/4) CR or CRi	CRS 50% (2/4)	

* Including 2 patients in compassionate use

C: cyclophosphamide; CF: cyclophosphamide and fludarabine; CFA: cyclophosphamide, fludarabine and Alemtuzumab; CE: cyclophosphamide and etoposide; CEVD: cyclophosphamide, etoposide, vincristine, dexamethasone; CDVP: cyclophosphamide, daunorubicin, vincristine, prednisone

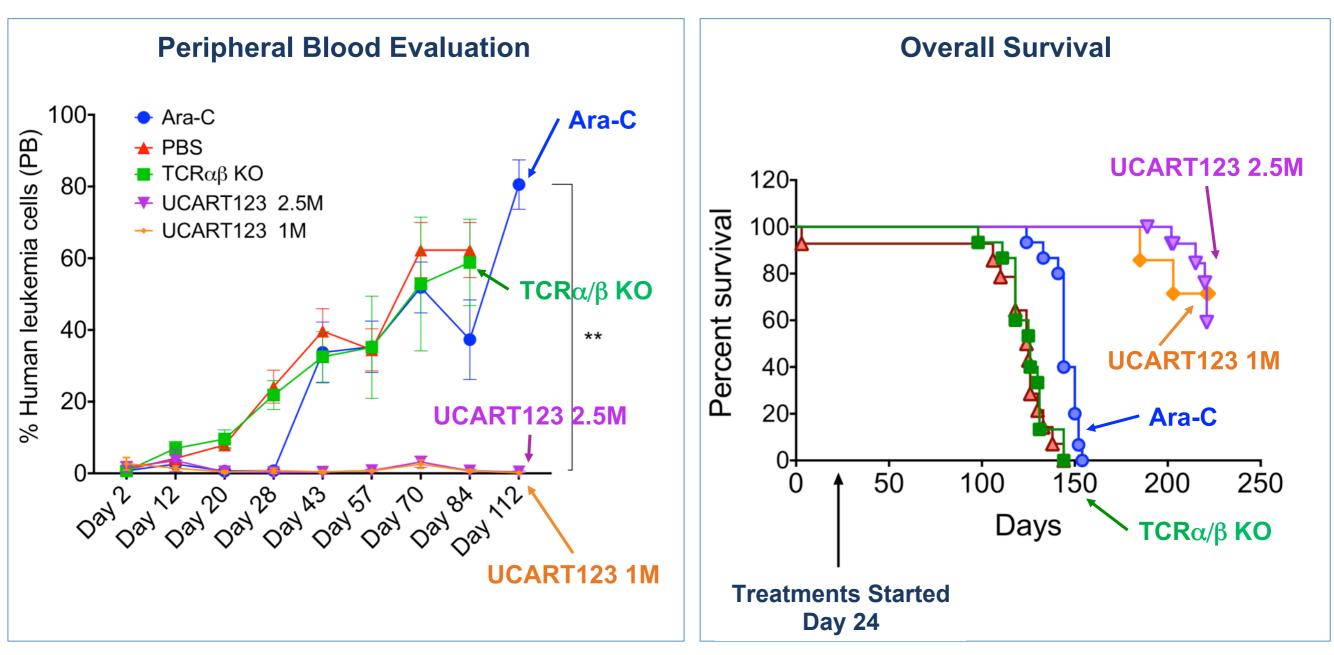
Minimal disease < 5% blasts, morphologic disease ≥ 5% blasts

CRi: complete remission with incomplete hematopoietic recovery

	Lymphodepletion & patient age	Disease status before treatment	Dose level (CAR-T Cells/kg)	MRD- CR/CRi	Adverse event > Grade 3	Relapse follow up
SERVIER & KCL (CALM) - ASH 2017	CFA >16y	1-5 lines of treatment, 4/6 patients in relapse after allo-SCT	Total 6x10 ⁶	71% (5/7)* CR or CRi	CRS 14% (1/7) NT 0% (0/7)	25% (1/4) - 6 m CD19+
KITE (ZUMA-3) ESMO 2017	CF >18y	56% to 100% BM blasts before conditioning, 7 pts in relapse and 4 pts in primary refractory disease	1x10 ⁶ or 2x10 ⁶	80% (8/10) CR, CRi or CRp	CRS 27% (3/11) NT 55% (6/11)	37% (3/8) - 3.8 m 2 CD19- and 1 CD19+
JUNO (ROCKET) ASCO 2016	C or CF >18y	30 pts with morphologic disease and 20 pts with minimal disease		82% (41/50) CR	CRS 27% (14/51) NT 29% (15/51)	
JUNO & MSKCC Sci Transl Med 2014	C Median 50y	Very high risk, refractory or relapse	3x10 ⁶	88% (14/16) CR or CRi	CRS 44% (7/16) NT 25% (4/16)	
JUNO & FHCRC J Clin Invest 2016	C or CF 20 to 73y	Refractory or relapse 3 prior lines of chemotherapy (range 1-11), 11 pts in relapse after allo-SCT	2x10 ⁵ , 2x10 ⁶ or 2x10 ⁷	93% (27/29) CR	CRS 23% (7/30) NT 50% (15/30)	
INNOVATIVE CELLULAR THERAPEUTICS ASCO 2017	- <60y		0.4 to 10.5x10 ⁶	73% (8/11) CR	CRS 18% (2/11)	

* Including 2 patients in compassionate use

C: cyclophosphamide; CF: cyclophosphamide and fludarabine; CFA: cyclophosphamide, fludarabine and Alemtuzumab


Minimal disease < 5% blasts, morphologic disease \ge 5% blasts

CRi: complete remission with incomplete hematopoietic recovery; CRp: complete remission with partial hematopoietic recovery

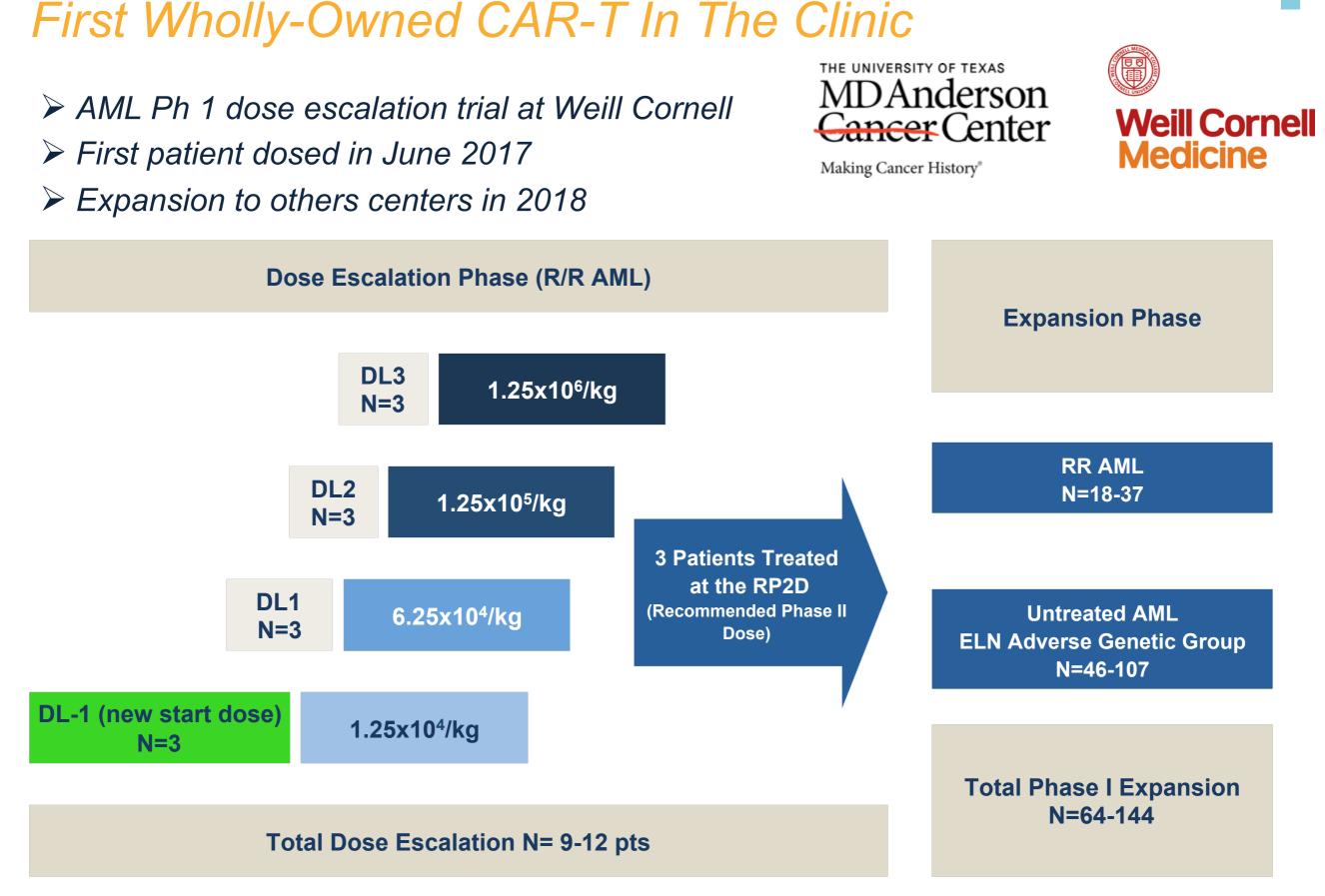
UCART vs autologous CART in ALL

	Expectations for UCART products	Autologous CD19 CAR-T		
Bridge To Transplant	For eligible patients	For eligible patients		
CART Persistence = Durable Response	Inconclusive	Inconclusive		
Toxicities	Minimal GvHD, Minimal Neurotox, Mild CRS	Strong CRS, Medium- to Strong Neurotox		
Ability to re-dose	Yes	Limited, if feasible		
Cost of treatment	\$	\$\$\$\$		
Market access	++++	+/-		
GvHD Risk	Minimal, reversible	N/A (maximal if vials mistaken)		
Current Patient Profile	RR; >5 th line patients	2 nd line patients		

Encouraging results with CD123 target in autologous CAR-T approaches

13

UCART123 in AML and BPDCN


Encouraging Efficacy Data

Significant improvement compared to Cytarabine standard-of-care (Ara-C)

Weill Cornell

Medicine

UCART123 in AML and BPDCN

In collaboration with Cornell-Weill

UCART123 in AML and BPDCN

Development plan

 Preclinical Proof of Concept UCART123 In vitro and in vivo development finalized 	Q4 2016
 Manufacturing UCART123 High yield, high potency cGMP batches 	Q4 2016
 IND for both indications AML Cornell-Weill BPDCN MD Anderson 	Q1 2017
 Phase 1 First patient enrollment, clinical hold lifted after 2 months Study resumed November 2017 with protocol changes 	Q2-Q3 2017
Interim DataUpdate on first AML patients	Expected in 2018
 Expansion Phase Phase 1b in RR and 1st line AML and BPDCN patients 	Expected in 2019

UCART22 Targeting ALL, NHL and other B-Cell Malignancies

Unmet Medical Need

- Relapse after CD19 CAR-T treatment
- Numerous ALL relapsing patients are CD19- but CD22+

Rationale

- Both CD22 and CD19 are expressed on various B-cells
- CD22 expression frequently
 - maintained in CD19-negative blasts¹

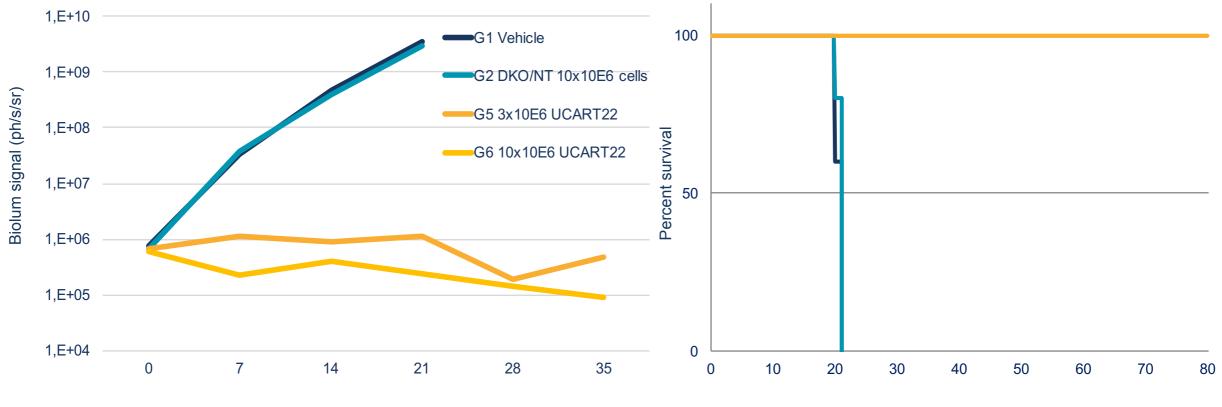
Target Antigen

 CD22, is expressed on the B-cell surface, persists on mature B-cells, and is lost on plasma cells

Proof of concept

- Anti-CD22 monoclonal antibodies
- Autologous CAR-T in development

UCART22 Strong anti-tumoral activity



> UCART22 is highly efficient at eradicating tumors *in vivo*

UCART22 cells result in increased mice survival

CD22+ cell line show no tumor progression

Survival curves

Days post treatment

UCART22 Development Plan

- In vitro cytotoxic activity demonstrated in CD22+ cell lines
- Generation of anti-CD22 proprietary monoclonal antibodies (selection ongoing)

In vivo studies

Proof of concept

Preclinical studies ongoing in collaboration with MD Anderson Cancer Center

Manufacturing

Similar manufacturing process to UCART19

IND filing

- CD22 as another target for B-cell malignancies (e.g. ALL,CLL,NHL)
- Potential to use as alternative dosing regimen after CD19 ALL / CLL treatment relapse

Q4 2017 - Q1 2018

Q3 2017

Q4 2016

Expected in 2018

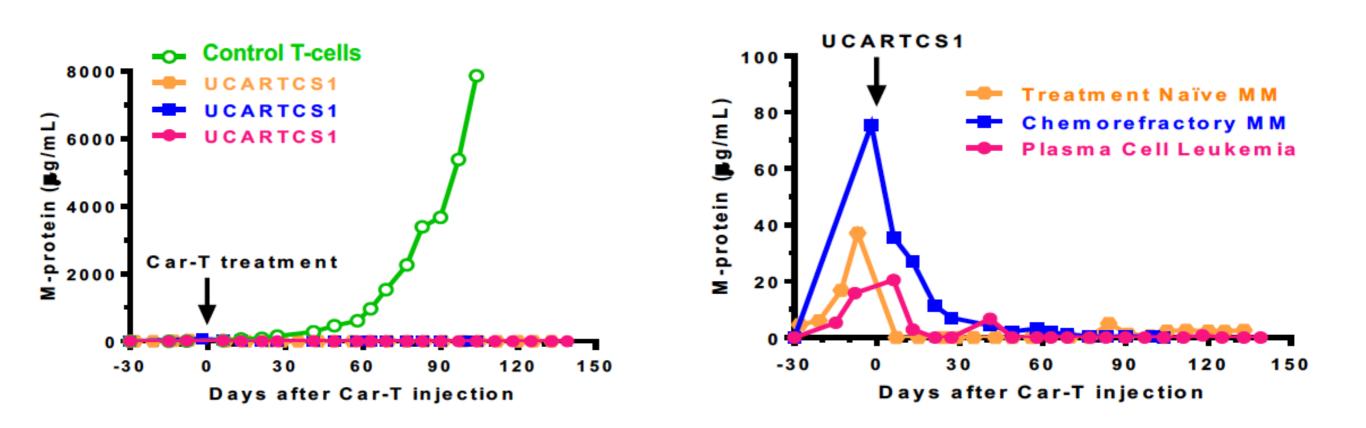
UCARTCS1 Targeting Multiple Myeloma

Unmet Medical Need

- > 30,000 patients / year in the US
- High relapse rate, median OS of 9 months

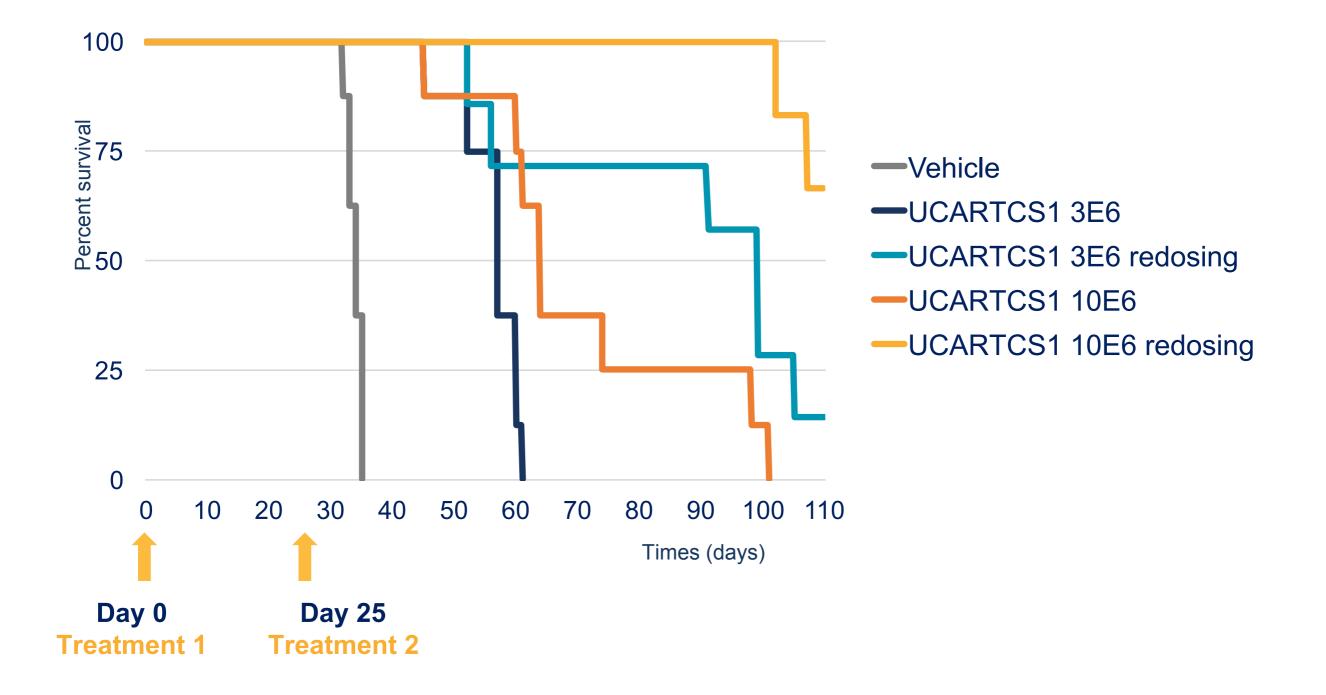
Target Antigen

- Well proven target with Elotuzumab (BMS/Abbvie) as PoC
- CS1 (SLAMF7) is highly expressed on MM cancer cells

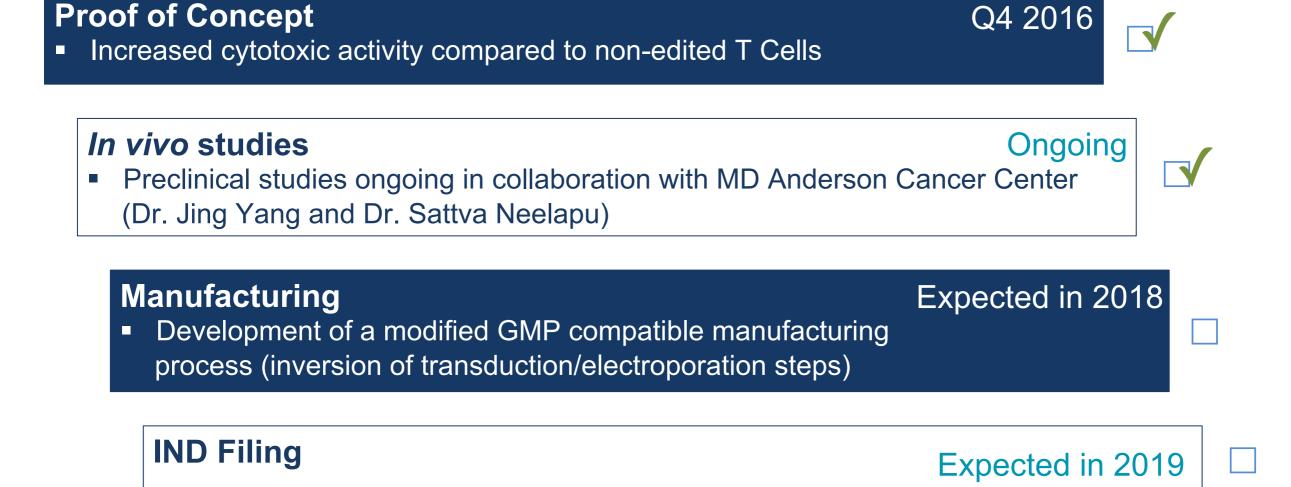

UCARTCS1 Attributes

- Pre-clinical data shows high efficacy of re-dosing strategies
- Suicide gene is included for safety
- TCR gene disruption using TALEN[®] to avoid GvHD
- CS1 gene is disabled by TALEN[®] to prevent CAR-T Cell cross-reactivity (CS1 is naturally expressed on CD8+ T Cells)

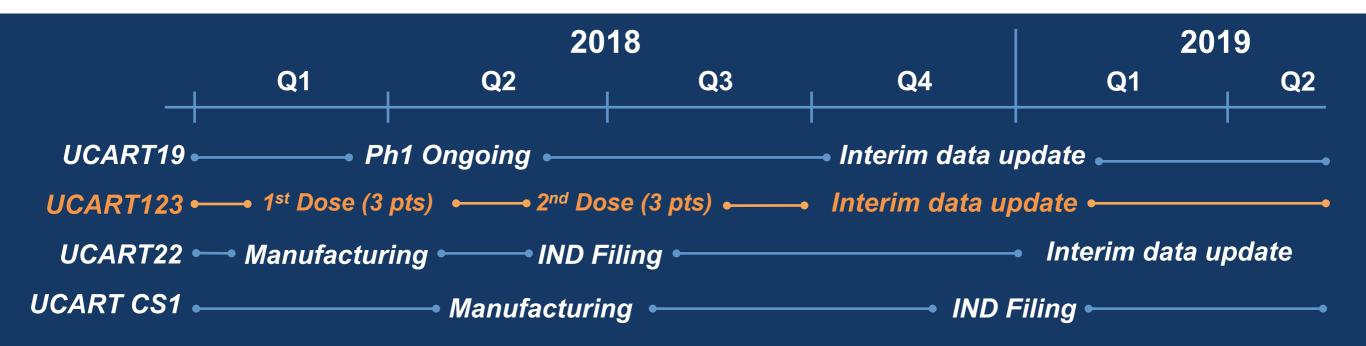
UCARTCS1 Anti-tumor activity with durable efficacy


 UCART CS1 exhibits durable *in vivo* efficacy in high-risk MM in PDX-MM models

UCARTCS1



Anti-tumor activity: high performance with re-dosing


UCARTCS1 Development Plan

18 months expected Milestone Timeline

- UCART19 in ALL patients

 Ph1 clinical trials ongoing; interim data was presented at ASH 2017
- UCART123 in AML and BPDCN patients
 Ph1 clinical trials on-going
- UCART22 IND in 2018, UCARTCS1 IND will follow
- Cash Runway into 2020 providing funding through multiple data readouts

THANK YOU

Cellectis S.A. 8, rue de la Croix Jarry 75013 Paris – France

Cellectis, Inc. 430 East 29th Street 10016 New York, NY – USA

investors@cellectis.com

0-